A bioactive titanium foam scaffold for bone repair.

Abstract

While titanium has been clinically successful as an orthopedic or dental implant material, performance problems still persist related to implant-bone interfacial strength and mechanical modulus mismatch between titanium and tissue. We describe here the preparation of a titanium foam as a better mechanical match to tissue with surfaces attractive to bone cells through deposition of an organically-modified apatite layer (organoapatite). In a rotating bioreactor, these organoapatite-coated foams are successfully colonized by preosteoblastic cells. Finite element analyses suggest that ingrown tissue in these systems may improve both implant performance and tissue formation through load-sharing and stress distribution. The novel metal-ceramic-polymer hybrid materials described here hold great promise for bone tissue engineering.

DOI
10.1016/j.actbio.2005.04.005
Year