Mimicking mussel adhesion to improve interfacial properties in composites.

Abstract

The macroscale properties of polymer-matrix composites depend immensely on the quality of the interaction between the reinforcement phase and the bulk polymer. This work presents a method to improve the interfacial adhesion between metal-oxides and a polymer matrix by performing surface-initiated polymerization (SIP) by way of a biomimetic initiator. The initiator was modeled after 3,4-dihydroxy-L-phenylalanine (dopa), an amino acid that is highly concentrated in mussel foot adhesive proteins. Mechanical pull out tests of NiTi and Ti-6Al-4V wires from poly (methyl methacrylate) (PMMA) were performed to directly test the interfacial adhesion. These tests demonstrated improvements in maximum interfacial shear stress of 116% for SIP-modified NiTi wires and 60% for SIP-modified Ti-6Al-4V wires over unmodified specimens. Polymer chain growth from the metal oxides was validated using x-ray photoemission spectroscopy (XPS), ellipsometry, scanning electron microscopy (SEM), and contact angle analysis.

DOI
10.1016/j.compscitech.2008.02.036
Year