Skip to main content
Home
  • Duke University »

Main menu

  • Research
    • Overview
    • Materials Genome Prediction (MaterialsMine)
    • Polymers and Nanostructured Polymers
    • Education Research (NRT)
    • Previous Projects
  • People
    • Current Members
    • Alumni
  • Publications
  • Funding
  • News
  • Contact

Research

  • Overview
  • Materials Genome Prediction (MaterialsMine)
  • Polymers and Nanostructured Polymers
  • Education Research (NRT)
  • Previous Projects
    • Shape Memory Alloys
    • Processing-Structure Correlation
    • Physics-Based Modeling
    • Local Characterization of Interphase (Visco)Elastic Properties
    • Multi-Scale Simulations
    • Indentation Mechanics for Polymers
    • Aging of Polymer Nanocomposites
    • Impedance Response of Polymers
    • Multi-Scale Hybrid Composites
    • Interphase and Free Surface
    • Synthesis and Characterization of Nanoreinforced Polymers
    • Nanocomposite Modeling
    • Percolation Effects
    • Fracture and Toughness
    • Bioinspired Nanocomposites
    • Quantifying Dispersion
  1. Research Overview

Previous Projects

The following research projects are inactive for the time being. For prospective students, you might contact us about these projects if you are interested. Click on the links below to learn more.

Materials Genome Prediction

Processing-Structure Correlation  
Coupling Physics-based Modeling with Material Genome Prediction

Polymers

Local Characterization of Interphase (Visco)Elastic Properties  
Multiscale Simulations  
Indentation mechanics for polymers   
Aging of Polymers and Composites   
Impedance Response of Polymers  
Multi-Scale Hybrid Composites

Nanostructured Polymers

Interphase and Free Surface    
Synthesis and Characterization of Nanoreinforced Polymers   
Nanocomposite Modeling   
Percolation Effects   
Fracture and Toughness   
Bioinspired Nanocomposites   
Quantifying Dispersion

Shape Memory Alloys

Micromechanical characterization 
SMA constitutive modeling: 1D Model, 3D Models, Multivariant Model 
SMA Composites 
Porous SMAs  
Porous Ti

Brinson Research Group

  • Mechanical Engineering & Materials Science
Duke Engineering logo

Copyright © 2025 Duke University

  • Research
    • Overview
    • Materials Genome Prediction (MaterialsMine)
      • NanoMine: Online MGI Prediction Platform
        • FEA Curation Extension to NanoMine
        • NLP-Driven Curation
      • Predicting Polymer Nanocomposite Properties
      • ChemProps
      • MetaMine
    • Polymers and Nanostructured Polymers
      • Atomic Force Microscopy
        • Interfacial Mechanics near Nanopatterned Surfaces
        • Optimal Experimentation
        • Stress Deconvolution
        • Dynamic Scanning Indentation (DSI)
        • AFM Characterization of 3D printed materials
        • Forward prediction of Nanocomposite Properties
      • Simulations
        • Interphase Aware NN Surrogate Model
        • ML Surrogate Model
        • Machine Learning-Assisted Polymer Nanocomposite Microstructure Design
        • Agglomeration DoE
      • 3D Printed Materials
    • Education Research (NRT)
    • Previous Projects
      • Shape Memory Alloys
        • Microstructural Characterization
        • 1-D SMA Modeling
        • 3-D SMA Constitutive Modeling
        • SMA Modeling: Multivariant Model
        • SMA Composites
        • Porous SMAs
        • Porous Ti
      • Processing-Structure Correlation
      • Physics-Based Modeling
      • Local Characterization of Interphase (Visco)Elastic Properties
      • Multi-Scale Simulations
      • Indentation Mechanics for Polymers
      • Aging of Polymer Nanocomposites
      • Impedance Response of Polymers
      • Multi-Scale Hybrid Composites
      • Interphase and Free Surface
      • Synthesis and Characterization of Nanoreinforced Polymers
      • Nanocomposite Modeling
      • Percolation Effects
      • Fracture and Toughness
      • Bioinspired Nanocomposites
      • Quantifying Dispersion
  • People
    • Current Members
    • Alumni
  • Publications
  • Funding
  • News
  • Contact